
FPGA Random
Forest Classifier

Exploring hardware based implementations of machine learning algorithms

Vivek Krishnan

15-418: Parallel Computer Architecture and Programming

Overview of Presentation

CV/ML Algorithms in Embedded Devices
Random Forest Classifier

Problem and Scope

Proposed Solution

Designing a Decision Tree to Minimize Routing

Implementing two Perpendicular Pipelines

Platform and Languages

Summary of Findings

Recommendations to Chip Designers

Problem And Scope

AppCrawlr compiled a list of the top 100+
IOS app that integrate computer vision

Constant Processing and Analysis is Expensive

Solution: Optimize the tasks that
are repeated many times

Random
Forest

Classifier
Output

On mobile platforms energy is also an important factor along with time

Object Detection Algorithm on sample data

We have already discussed how using fixed function
units implemented in hardware can improve efficiency by

orders of magnitude.

Decision Trees
Given an input to the system, make a
decision at each node whether to branch
left or branch right

Output is dependent on the path taken through
the decision tree

Processing on each level is independent
!
Going from level-to-level must be done
sequentially

Each Node contains information about the index
of the sample it will analyze as well as the threshold
which determines the direction of branching

Random Forest

Fitting sample data to a specific
decision tree may be inaccurate

Instead, generate n trees with random
fluctuations in construction. Average
the output of all the trees to get better
solution

Processing across trees is independent

Sample Data Points (blue points) are fitted by
random trees (grey line) and the output of the

forest (red line) is the best fit

Proposed Solution

ALTERA DE2 Board
Altera Cyclone® IV E FPGA
50 MHz Clock
2MB SRAM

128 MB SDRAM

Describe hardware using Verilog
Abstraction of gate-level design
Used by a synthesizer to create the board,
is not actually executed

Specifying the data paths and connections

Basic Algorithm exploits data parallelism
 for (sample in sample_data) {

 sample_result = 0;

 for (tree in forest) {
 local_result = 0;
 current_node = tree.base_node; //possible 0

 for (level < max_tree_depth) {

 node_index = NUM_NODES_PER_TREE * treeIdx + current_node
 node_threshold = get_threshold (node_index);
 sample_var_idx = get_corresponding_var (node_index);
 sample_var_data = sample.getVar(sample_var_idx);

 //If at a branching node in the tree
 if (level < max_tree_depth) {
 branchLeft = (sample_var_data < node_threshold);
 current_node = next_node (branchLeft);
 //If at a leaf node in the tree
 } else {
 local_result = get_result (node_index);
 }

 }
 sample_result += local_result;
 }

 sample_responses[sample] = process_result (sample_result);
 }

Trees

Samples

Simple Implementation of a Tree

Node

Node Node

Node Node Node Node

Sample We want to maximize the amount of work we do
on a board but the amount of resources is limited

Routing on the naive solution grows at a rate of
2^(depth of tree)

Only one level of a tree can be done in parallel

Level 3

Level 2

Level 1 Mem 1

Mem 2

Mem 3

Better Way to Represent a Tree

Output of each level includes the
nodeIdx of the next node it will visit

Each level can access appropriate
memory from fast SRAM

Now routing for the tree grows linearly
with depth for the tree

Creating an Ensemble that can run in parallel

Level 3

Level 2

Level 1

Level S

Level 3

Level 2

Level 1

Level S

Level 3

Level 2

Level 1

Level S

Level 3

Level 2

Level 1

Level S

Tree 1 Tree 2 Tree 3 Tree N

Output Bandwidth: N Data Values per Cycle

Sample

Reality
I/O sucks on FPGAs and is the bottleneck for the system

The data transfer rate of the outputs of the algorithm will stall near the output and back
up the entire system. I/O cannot scale linearly with the number of trees that are needed
to classify larger and larger datasets

Much rather have a system that will output a consistent one data value per cycle

Can remove the logic needed to ensure that the next unit is ready for the sample data
because data movement patterns are consistent and manageable

The USB blaster on the system I was using had a data rate of 480 Mbps
With a 50MHz Clock, this equates to about 10 bits per cycle

That is less than one floating point per cycle hooked up to a system that can output
n different floating points per cycle

Sample Data Pipeline

Sample Data Pipeline

Sample Data Pipeline

Sample Data Pipeline

1 1 1 1

Perpendicular Data Pipelines

Depth S
Trees

N Trees

Output Bandwidth : 1 Sample per Cycle

Sample Data Pipeline

Sample Data Pipeline

Sample Data Pipeline

Sample Data Pipeline

1 1 1 1

Data floods into the system from the sample Pipeline. It takes
N+S clock cycles for the system to reach peak output.

Depth S
Trees

N Trees

Sample Data Pipeline

Sample Data Pipeline

Sample Data Pipeline

Sample Data Pipeline

1 1 1 1

Once filled, system can output one
processed sample per clock cycle

Depth S
Trees

N Trees

Sample Data Pipeline

Sample Data Pipeline

Sample Data Pipeline

Sample Data Pipeline

1 1 1 1

Depth S
Trees

N Trees

Cross dependencies used to harness the bandwidth

Sample Data Pipeline

Sample Data Pipeline

Sample Data Pipeline

Sample Data Pipeline

1 1 1 1

Depth S
Trees

N Trees

Sample Data Pipeline

Sample Data Pipeline

Sample Data Pipeline

Sample Data Pipeline

As board designed get better I/O rates, we can increase outputs
per cycle by adding S new components for each new speed. Since

the depth of the tree is not that large, this is not bad

Summing Results
Summing n results with a reduce structure takes log(n) levels and we would need to
build a summing reduction tree from the outputs of all our decision trees.

Because our system has a predictable output pattern, we can make the summing logic
simpler and lock-free (because we design hardware to avoid race conditions)

One Cycle

One Cycle

Summing is bad for the parallel C++ implementation
Unpredictable access and completion pattern for threads
based the memory accesses
Have to use locks and mutexes (built in OpenMP reduction command) in
order to get correct sums

But easy on the FPGA implementation

Each tree outputs its completed data in a predictable pattern

Every N consecutive outputs will belong to the same sample so the
tree can also output the specific sums for each sample if necessary

Summary of Findings

Total Execution Time (Cycles) / NumSamples
GHC 3000 : Two Core Intel Core 2 Duo, 2 physical cores, 12 OpenMP Threads

GHC5205: Four Core Intel Xeon 5600, 4 OpenMP Threads

Graph for 32 Bit Data Size, 32 Trees, Depth 6
Similar relative performance at varying forest sizes

Graph for 32 Bit Data Size, 32 Trees, Depth 6
Similar relative performance at varying forest sizes

Cyclone IV FPGA
XeonFour Core

Core 2 Duo

10.9 W
79 W (TDP) ~ 55 W (ACP)
130 W (TDP) ~ 105 W (ACP)

FPGA operating at 1.2 V and I measured the current
to get the effective watts of the system. Compared this
to the average power consumption rating of the chips

I compared the FPGA performance to

Performance on a FPGA is roughly linear to the number of
trees as long as sample size is large compared to forest size

However there is a limit on the amount of trees we can pack onto an FPGA
board. Memory required by the random forest is roughly:

num_trees * [2 * 2^depth + 3 * 2^(depth-1)] * data_size
On the Cyclone IV, this implies that the maximum number of depth 6 trees for floating
points that can be fit on a board is around 2000 for the memory. Because the logic
of our design is minimized, the routing and logic on the board is not a resource constraint

Memory on Random Forest Chips

This algorithm is definitely memory-bound so significant
resources for the chip should be put into providing a lot
of fast access SRAM on the chip

Because of the stage independence in memory, it would be
better to have a distributed memory system that focuses on
maximizing input/output data pins. This is opposed to a larger
bank of memory that sacrifices connections for the ability to
store more data

I/O on a Random Forest Chip

Much of the efficiency from this implementation of the algorithm
comes from the predictable data flow patterns of samples through
the tree

Faster I/O on a device will directly affect the speed at which the
algorithm can output data up to N data samples per cycle

If faster I/O cannot be achieved but the overall number of samples
is low, it would be optimal to have a large output buffer for the I/O.
Even if inflow to the buffer is faster than outflow while computation
occurs, the samples could finish processing before the buffer is filled.

